深圳市2023-2024 学年初三年级中考适应性考试数学学科

参考答案及评分标准

一、选择题

题号	1	2	3	4	5	6	7	8	9	10
答案	В	C	A	D	В	C	D	A	C	В

二、填空题

题号	11	12	13	14	15
答案	$\frac{2}{5}$	4	$\frac{2}{9}$	$3\sqrt{3}$	$3\sqrt{6}$

三、解答题

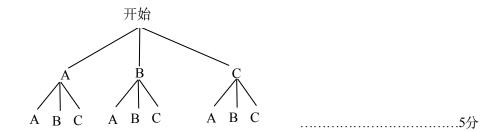
16. 解法一:
$$x^2 - 4x + 3 = 0$$

$$x-3=0$$
 $\vec{\boxtimes}$ $x-1=0$

$$(x-2)^2 = 1 \qquad 3 \ \text{f}$$

$$x-2=\pm 1$$
 4 分

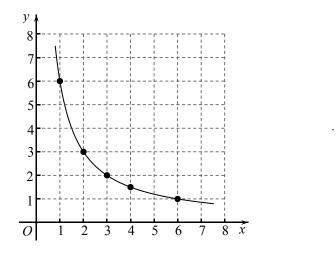
解法三: $x^2 - 4x + 3 = 0$


这里
$$a = 1, b = -4, c = 3$$
 1 分

∴
$$b^2 - 4ac = 16 - 4 \times 1 \times 3 = 4 > 0$$
 2 分

$$\therefore x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$$

即
$$x_1 = 3$$
, $x_2 = 1$ 。 5分


(2) 解法一:

	A	В	С	
A	(A, A)	(A, B)	(A, C)	5分
В	(B, A)	(B, B)	(B, C)	
С	(C, A)	(C, B)	(C, C)	

共有9 种等可能的结果, 其中小明和小颖同时选择"莲花春早"的结果有1 种,

(备注: ①解法一中, 9 种等可能结果没有列举出来不扣分, 即"树状图"正确3分, "结果"正确2分; ②解法二中, 表格中没有结果表示, 只作标记如打√, 且没对√的含义给出解释, 扣1分)

.....6分

(3) 解法一: $k = 6 > 0$, $x > 0$ 时, y 随着 x 的增大而减小	
$\therefore a < a + 1, \therefore b > c.$	
解法二:由 (2) 所绘制的曲线图像可知 y 随着 x 的增大而减小,	
$\therefore a < a + 1, \therefore b > c.$	2分
解法三:根据题意,得	
$b = \frac{6}{a}, c = \frac{6}{a+1},$	
所以 $b-c=rac{6}{a}-rac{6}{a+1}=rac{6(a+1)-6a}{a(a+1)}=rac{6}{a(a+1)},$.1分
因为 $a>0$, $a+1>0$, 所以 $a(a+1)>0$, $\frac{6}{a(a+1)}>0$, 因此 $b>c$	分
解法四:根据题意,得	
$\frac{6}{}$	
$b = \frac{6}{a}$, $c = \frac{6}{a+1}$, $\mathfrak{K} \ \mathcal{L} = \frac{\frac{6}{a}}{\frac{6}{a+1}} = \frac{a+1}{a} = 1 + \frac{1}{a}$,	1 分
因为 $a>0$,所以 $1+\frac{1}{a}>1$,因此 $b>c$ 。	2 分
(其它解法, 酌情按步骤给分)	
19. (1) <u>(10x+100)</u> ; (备注: 代数式没有添加括号不扣分)	3分
(2) 根据题意,得	
(2) 根据题意,得 $(60-40-x)(10x+100) = 2240$	
	5分
(60-40-x)(10x+100) = 2240 解得: $x_1 = 4$, $x_2 = 6$	5分 6分
$(60-40-x)(10x+100)=2240$ 解得: $x_1=4$, $x_2=6$	5分 6分 7分
(60-40-x)(10x+100) = 2240 解得: $x_1 = 4$, $x_2 = 6$	5分 6分 7分
$(60-40-x)(10x+100)=2240$ 解得: $x_1=4$, $x_2=6$	5分 6分 7分
$(60-40-x)(10x+100)=2240$ 解得: $x_1=4$, $x_2=6$	5分 6分 7分 8分
$(60-40-x)(10x+100)=2240$ 解得: $x_1=4$, $x_2=6$	5分 6分 7分 8分
$(60-40-x)(10x+100)=2240$ 解得: $x_1=4$, $x_2=6$	5分 6分 7分 8分
$(60-40-x)(10x+100)=2240$ 解得: $x_1=4$, $x_2=6$	5分 6分 7分 8分
$(60-40-x)(10x+100)=2240$ 解得: $x_1=4$, $x_2=6$	5分 6分 7分 8分
$(60-40-x)(10x+100)=2240$ 解得: $x_1=4$, $x_2=6$	5分 6分 7分 8分
$(60-40-x)(10x+100)=2240$ 解得: $x_1=4$, $x_2=6$	5分 6分 7分 8分 1分
$(60-40-x)(10x+100)=2240$ 解得: $x_1=4$, $x_2=6$	5分 6分 7分 8分 1分

证明:	:·四边形ABCD为矩形
	AD//BC
	∴ ∠FAO=∠ECO, ∠AFO=∠CEO2分
	$ abla \cdot AF = CE$
	∴ $\triangle AFO \cong \triangle CEO$
	∴ OE=OF
解法三	.: 增加条件 <u>DF=BE</u> 1分
证明:	:: 四边形ABCD为矩形
	AD//BC, $AD=BC$
	∴ $\angle FAO = \angle ECO$, $\angle AFO = \angle CEO$
	$ abla \cdot :DF=BE$
	∴ $AD - DF = BC - BE$, $\mathbb{P}AF = BE$
	$∴ \triangle AFO \cong \triangle CEO.$ 3 $\%$
	∴ OE=OF
(说明	$ar{F}$: 添加"点 O 为 EF 中点"或" AC 平分 EF "或"点 E 、 F 关于点 O 中心对称"等通过一
步推理	就能得到结果的,仅给1分。添加" $AB=BC$ "等通过两步或以上推理并能正确证明的,
可以给	3分。)
(2) 角	解法一:
:: 四边	形ABCD为矩形
∴ ∠ <i>Al</i>	BC=90°
在Rt△	ABC 中,由勾股定理可得, $AC = \sqrt{AB^2 + BC^2} = \sqrt{6^2 + 8^2} = 10$
由 (1)	可知, $\triangle AFO \cong \triangle CEO$,
∴ <i>OA</i> =	EOC, $OE=OF$
∴ OC=	$=\frac{1}{2}AC=5.$
<i>∵EF</i> ⊥	AC
∴ ∠ <i>E</i> 0	OC=90°
∴ ∠ <i>Al</i>	$BC = \angle EOC$
∵ ∠A0	$CB = \angle EOC$
∴ △AI	$BC \sim \triangle EOC$
$\therefore \frac{AB}{EO}$	$=\frac{BC}{OC}, \mathbb{R}\mathbb{P}\frac{6}{EO} = \frac{8}{5}$
∴ <i>EO</i> =	$\frac{15}{4}$

设EA=EC=x,则BE=8-x

在 $Rt \triangle ABE$ 中,由勾股定理可得, $AB^2 + BE^2 = AE^2$,即 $6^2 + x^2 = (8-x)^2$

由
$$S_{\triangle AEC} = \frac{1}{2}EC \cdot AB = \frac{1}{2}AC \cdot OE$$
,即 $\frac{1}{2} \times \frac{25}{4} \times 6 = \frac{1}{2} \times 10 \times OE$

得
$$OE = \frac{15}{4}$$

$$\therefore EF = 2EF = \frac{15}{2} \tag{8}$$

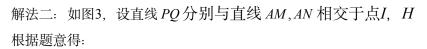
(其它解法, 酌情按步骤给分)

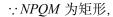
- (3) 解法一:

如图3,设AB与MN相交于点G,根据题意得:

$$\angle ANM = \angle NAG = 45^{\circ}$$
, $\therefore \angle AGN = \angle AGM = 90^{\circ}$

$$\not Z :: AG = AG, \angle MAG = \angle NAG = 45^{\circ}$$


$$\therefore GM = GN$$

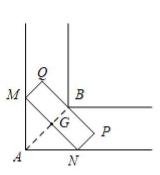

$$\therefore MN = 2AG$$

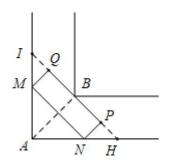
$$\nabla : AB = 4\sqrt{2}$$
, $NP = BG = 2$

$$\therefore MN = 2AG = 2(AB - BG) = 8\sqrt{2} - 4 \dots 6\%$$

$$1.4 \times 1.4 = 7.2$$

∴ *PQ//MN*


 $\therefore \angle IHA = \angle MNA = 45^{\circ}$,


 \mathbb{Z} : $\angle MAN = 90^{\circ}$

$$\therefore PQ = HI - IQ - PH = 8\sqrt{2} - 4 \dots 6$$

$$1.4 \times 1.4 \times 1.4$$

:.根据实际情况可得: a的最大整数值为7 m。......7分

解法三:

如图,延长QP交直线AN相交于点H

根据题意得:

- ::NPQM 为矩形,
- $\therefore PQ//MN$, $\therefore \angle PNM = 90^{\circ}$
- $\therefore \angle BHA = \angle MNA = 45^{\circ}$,
- $\therefore \angle PNH = \angle BAH = 45^{\circ}$

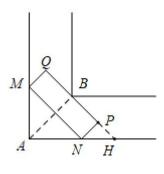
$$\therefore \frac{PH}{BH} = \frac{PN}{AB}$$

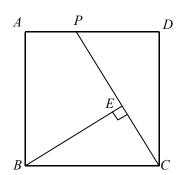
$$\therefore BH = \frac{AB \cdot PH}{PN} = 4\sqrt{2}$$

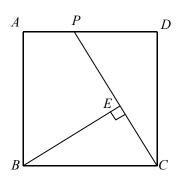
$$1.4 \times 1.4 \times 1.4 = 7.2$$

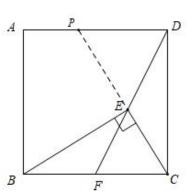
22. (1) 证法一:

- ::四边形ABCD为正方形
- :.*AD*//*BC*, ∠*D*=90°.....1分
- $\therefore \angle BEC = 90^{\circ} = \angle D$


证法二:


- ·:四边形ABCD为正方形
- ∴ ∠*BCD*=∠*D*=90°.....1分
- ∴ ∠*DCP*+∠*BCE*=90°
- ∴ ∠*BEC*=90°
- ∴ ∠*BCE*+∠*EBC*=90°
- \therefore △BEC \backsim △CDP......3分
- (2) 解法一:


如图, 延长CE交AD于点P


由 (1) 得 $\triangle BEC \backsim \triangle CDP$

$$\therefore \frac{CE}{PD} = \frac{BE}{CD}$$

解法二:

如图,将 $\triangle BEC$ 绕点C顺时针旋转90°得到 $\triangle DGC$,

延长BE交DG于点P

由旋转可知,∠ECG=∠G=90°, EC=GC

又 ∵ ∠*BEC*=90°

∴ ∠*PEC*=90°

::四边形ECGP为矩形

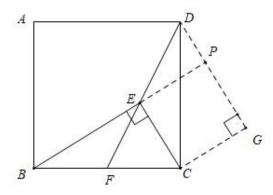
又::EC=DG

::矩形ECGP为正方形......4分

∴ ∠*DPE*=90°

又::点F为BC的中点

 $\therefore BF = EF$

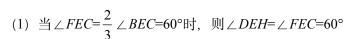

 $\therefore \angle EBF = \angle FEB$

 $\therefore \angle FEB = \angle DEP$

 $X :: \angle BEC = \angle DPE$

 $\therefore \triangle BEC \backsim \triangle EPD$

设EC=a, BE=b, 则DP=a-b, EP=a

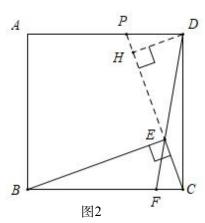

(其它解法, 酌情按步骤给分)

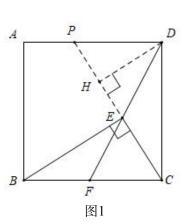
(正确写出一个结果给2分,全对给3分)

解法一: 如图, 延长CE交AD于点P, 过点D作DH \bot PC, 垂足为点H

- ·:四边形ABCD为正方形
- $\therefore BC=CD, \angle BCD=90^{\circ}$
- ∴ ∠*BCE*+∠*DCH*=90°
- $\therefore \angle BEC = 90^{\circ}$,
- ∴ ∠*BCE*+∠*EBC*=90°
- $\therefore \angle DCE = \angle EBC$
- \mathbb{Z} :: $\angle DHC = \angle BEC$
- $\therefore \triangle BEC \cong \triangle CHD$
- $\therefore DH=EC, BE=CH$

设EC=DH=a, BE=CH=b, 则HE=HC-EC=a-b,




在Rt
$$\triangle DHE$$
中, $\frac{HE}{HD} = \frac{\sqrt{3}}{3}$,即 $\frac{a-b}{a} = \frac{\sqrt{3}}{3}$,解得 $\frac{a}{b} = \frac{3-\sqrt{3}}{2}$,即 $\frac{CE}{BE} = \frac{3-\sqrt{3}}{2}$

(2) 当 $\angle FEC = \frac{1}{3} \angle BEC = 30$ °时,则 $\angle DEH = \angle FEC = 30$ °

在Rt
$$\triangle DHE$$
中, $\frac{HE}{HD} = \sqrt{3}$,即 $\frac{a-b}{a} = \sqrt{3}$,解得 $\frac{a}{b} = \frac{\sqrt{3}-1}{2}$,即 $\frac{CE}{BE} = \frac{\sqrt{3}-1}{2}$

解法二:参照第二小问中的解法二。

